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The conditional probability of finding a cavity G(r) devoid of molecular 
centers of hard sphere fluid is modified by making use of the discontinuity 
at r = a/2 (a is the diameter of a molecule). The new equation of state thus 
obtained is bounded by the Percus-Yevick compressibility and virial 
pressure equations of state, which may be the upper and lower bounds to 
the results of machine calculation. 
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1. I N T R O D U C T I O N  

The s implest  vers ion o f  the Pe rcus -Yev ick  (PY) theory  yields two approx i -  
mate  expressions (2) for  the pressure  p o f  a classical  fluid o f  ha rd  spheres (HS) 
of  d iamete r  a and  number  densi ty  p, the  PY " c o m p r e s s i b i l i t y "  re la t ion  
(PYC) 

ppc/p = (1 + ~ + ~2)/(1 - ~7) 3 (1) 

and  the PY " v i r i a l "  re la t ion  (PYV) 

/3pv/o = (1 + 2 7 + 3~/2)/(1 - ~7) 2 (2) 

where /3 = 1/kt and  ~/ = 7ra3p/6. Uti l iz ing  some very meager  in fo rma t ion  
abou t  the geomet ry  o f  the HS fluid (which will be summar ized  below),  
Reiss et al. m showed tha t  the or ig inal  fo rmula t ion  o f  the scaled par t ic le  
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theory (SP) led naturally to (1). Indeed, (1) was first derived from this SP 
theory. The mathematical shortcomings of  (1) and (2) are quite evident. 
Besides their historical importance (1) and (2) are still of  some interest 
because molecular dynamics studies (3~ suggest that they are possibly an 
upper and a lower bound, respectively, on ~p/p of HS, although to date this 
has not been rigorously demonstrated. The similarity in the form of (1) and 
(2) suggests that they contain essentially the same amount (or lack thereof) 
of geometric information about the HS. We will show that a minor mathe- 
matical modification of the original formulation of SP theory, utilizing only 
the geometrical information contained in Ref. 1 (actually not all the available 
information) leads one to a sequence of  approximate expressions for ~P/p of  
HS which contains as strict upper and lower bounds (1) and (2) respectively. 

2. SCALED PARTICLE T H E O R Y  A N D  A M O D I F I C A T I O N  

In the SP theory of  Ref. 1 attention is focused on a cavity of  radius r 
(a spherical volume devoid of  HS centers) in the HS fluid of density p. The 
reversible work necessary to increase the radius of the cavity, producing a 
volume change dv = 4~r 2 dr and a surface area change ds = 87rr dr, can be 
shown to be given by 

dW(r,  p) = p dv + a(r, p) as = ~ - lpG(r )  dv (3) 

with p the HS pressure, a(r) the HS surface tension against a cavity of  radius 
r, and G(r)dv  the conditional probability of  finding a HS center in the 
volume element dv adjacent to a cavity of radius r. Thus 

G(r) = (p~/p) + [2~(r)~/pr] (4) 

The central significance of  the function G(r) for the computation of the 
pressure lies in the fact that a cavity of  radius r = a behaves like a fixed HS 
so that m 

G(a) = g(a) (5) 

g(a) is the contact value of  the radial distribution function of the HS fluid, 
thus providing a means, via the virial theorem for HS [p~/p = 1 + 2~rpaag(a)], 
for finding p once G(a) is known. Since thermodynamic considerations 
suggest that as r -+ 0% e(r) --+ e0, the HS surface tension against a rigid flat 
wall, one can combine these facts into the single formula (1~ 

pfl/p = G(oo) = 1 + ~rraapG(a) (6) 

Since a cavity of radius r < a/2 can accommodate at most one HS center, 

while for a/2 <~ r <~ a/~/-J at most two HS centers can be accommodated, 
etc., Reiss et aL (~ showed that 

G(r) = 1/(1 - -}rrrap), r <<. a/2 (7) 
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and 

(;) , G = i - ~  

-- (1 --- ~)2 + ( r  = ~-~3 + Ae (10) 

with Aa -= -[8~ap/(1 - O ] G ( a ) ;  A a is the discontinuous part of  ~2G/~r2 
evaluated at r = a/2. Even more geometric information as it affects this 
function G(r) is contained in Ref. 1 but will not be used here. 

Using essentially the "smoothness"  of the function G(r) in the annular 
region a/2 <~ r <~ a, the basic approximation of Reiss et al. <1) was to replace 
in that region and for r > a the exact function by the analytic quadratic 
polynomial in air 

G~(r) /3p + 1 + = P + X. + A. (11) 
p pr ~7 

with P(O = tiP~P, X(O = 2[3~o/pa, and A07 ) = [3~oS/pa. The detailed argu- 
ments supporting (11) need not be repeated here. The coefficients of  (11) are 
evaluated by substituting (11) into (6), (8), and (9), and solving the resulting 
system of  three homogeneous equations for P, 2~, and A. The resulting equa- 
tion for P as a function of the reduced density ~ is (1). 

In deriving (1), no use was made of  the jump condition in the second 
derivative of G(r), Eq. (10). Eventually, a serious program of  modification 
of this theory for G(r) must take systematic account of  the discontinuities in 
the successively higher derivatives of G(r) at r = a/2, a/v/3, etc. This is not 
our purpose here. Rather, our modification will simply consist in augmenting 
(11) by a term which enables us to make use of  the first jump condition on 
the higher derivatives of G(r), namely (10). We thus replace (11) by 

G~(r) = Go(,') + G~,,(r) 

G~a(r) = T01) E r - ~ ] \ a -  1 r ' n i> 2 (12) 

where G,(r) is given by (11) and Gza(r) is the contribution to the approximate 
G(r), G~(r), arising from the discontinuity in the second derivative of G(r) at 
r = a/2, with E(r - a/2) the Heaviside function of the indicated argument. 
The factor in the square bracket in G~a(r) ensures the proper behavior at 
r = a/2. The remaining factor must be a " s m o o t h "  function of  ~ and r/a 
which vanishes sufficiently rapidly as r -+ ~ so that G~d(r) is bounded. The 
choice made in (12) is mathematically perhaps the simplest in form which is 
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consistent with Ref. 1 and would certainly not  be made if we were interested 
in opt imal  curve fitting. We shall re turn to this point  later. The  form given 
in (12) with n = 3 would be consistent with the curvature expansion of  the 
G i b b s - T o l m a n - K S n i g  surface tension formula.  This is not  an argument  
which supports  (12) since that  formula  is an approximat ion whose statistical 
geometric basis is incompletely understood.  

To  evaluate P(~/), Z(V), A(~/), and T(V) of  (12) we substitute (12) into (6) 
and (8)-(10) to obtain 

( 4 V -  1 ) P + 4 v Z + 4 ~ A + 4 - q T =  - 1  

P + 2Z + 4A --- (1 - ~)-~, - 2 Z  - 8A = 37//(1 - V) (13) 

3(1 - V)-IP + 4Y, + 24A + 32T = 6/(1 - ~/)2 + 18~/2/(1 _ 7)3 

respectively. [G(a) in (10) was eliminated using (6).] Solving the homogen-  
eous system of  equations yields the desired coefficients. Setting ~ = 2 -"+~, 
one has 

P(~2) = [1 + 5~2 + 8~7 2 + ( - 1  + 5~)~/al/D (14) 

Z(V) = -(3~7/2)[1 + 5~V - (1 - 4~)~721/D (15) 

A(~/) = [3V 2 + (9~ - 3),qal/4D (16) 

T(V) = - 3~2~(2 + 7])/4D (17) 

where D = (1 - ~/)2[1 + ( - 2  + 5~)~/ + (1 - 2~)7/2]. Equat ions (12) and 
(14)-(17) constitute the simplest version o f  this modification of  the SP 
theory. For  n = 2 (~ = 1/2), (14) reduces to (2), while for  n - +  oo (~ = 0), 
(14) leads to the original SP theory result (1). 

3. PROPERTIES  OF T H E  M O D I F I E D  SP T H E O R Y  

Since the virial theorem (6) is employed in determining the ~/-dependent 
coefficients in Gl(r), one does not  expect it to exactly satisfy the thermo- 
dynamic "compressibi l i ty  pressure re la t ion"  derived in Ref. 1, 

P - 1 = p dr G(r, p)4rrr 2 - 1 p' dp' dr G(r, p')4~r 2 (18) 
P 

The only analytic, approximate  G(r, p) which satisfies (18) is Ga(r, p). 
IfP(~7) and Gl(r) are expanded as formal  power series in V for all ~ ~< 1/2, 

we find that  (18) is satisfied only by the constant  and linear term of  the ex- 
pansion of  G~(r) and up to and including the quadratic term of  P(~) given 
by (14). By direct substitution of  the ~7 expansions of  (12) and (14) in (18) 
one finds that  there is a unique value of  ~ = ~ = 2 -"+1 for which the quad- 
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ratic term in the Gl(r) expansion and up to the cubic term o f  the P(7) ex- 
pansion fulfill (18). This value o f  n = t~ satisfies 

[8 - 5h + h 2 - 1/2~1/[(5 - h)(4 - ~)(3 - ~)] = 2/9 (19) 

A straightforward numerical solution yields 

~ 3.69 (20) 

These facts suggest that  at least for sufficiently small values of  ~, G~(r) 
may be a potential candidate which, as we shall see, provides improved 
values o f  the lower-order virial coefficients. 

The behavior  o f  Gz(r) and its coefficients [like that o f  Ga(r)] for values 
o f  7 approaching unity is unsatisfactory. Clearly the divergence o f  Gl(r), 
etc. as ~ --~ 1 is not  in accord with the facts o f  geometry.  There is no improve- 
ment  in the behavior  o f  G~(r) over Ga(r) in that  regard. We have no rigorous 
result to compare  the behavior  o f  Gl(r) for intermediate values of  7. We 
can do a little better if we examine the behavior  o f  the reduced pressure P07) 
as a funct ion o f  7. 

First we note that  that  P(~) given by (14) is nondecreasing with respect 
to n for fixed 7, 0 ~< ~ ~< 1, and with respect to ~ for fixed n 1> 2. Specifically, 

OP/~ ~ O, 0 <~ 7 ~ 1; OP/O 7 >1 O, for all n /> 2 (21) 

The v~rial expansion of  P(~7) gives 

P(7) = ~ Bsv j-1 (22) 
j = l  

with 

B1 = 1, B2 = 4, B3 = 10, 

which are all exact, and 

B4 = 19 - 6~ 

B5 = 31 - 3 3 ~ +  30~ 2 

B6 = 46 - 105~ + 213~ 2 - 150~ 3 

(23) 

(24) 

Table I. Numerical Values of the Virial Coeff icients of (22) 

PY virial PY compressibili ty 
Exact or  (2) (1) 

Bj machine result n = 2 n = co n = ~  

//4 18.365 16 19 17.98 

B5 28.24 22 31 26.26 

B6 39.5 28 46 33.57 
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Fig. 1 

Table I summarizes the numerical comparison in the lower virial coeffi- 
cients with exact or machine results. (3~ 

We have compared P(~7) for n = t1 with the molecular dynamics (MD) 
computations of Alder and Wainwright (a~ in Fig. 1. Below the phase transition 
as seen in the MD result (i.e., along the fluid branch) the agreement is satis- 
factory; above the density of this transition it is unsatisfactory. 

The low-density expansion of the reduced surface tension Z(~7) given by 
(15) gives 

Z(~7) = -3,711 + 4~ 7 + (9 - 4~)~72 + ""l (25) 

This can be compared with Bellemans '(4~ two-term exact (virial) expansion 

Z(w)(Bellemans) = -z~q(1 + 4.2567 + ...) (26) 

We see there is no improvement over the origina ! SP theory in the second 
term (in ~72) of this expansion. Nonetheless a nonvanishing ~ does reduce 
significantly the value of %. For  example, if we treat argon at 85~ as an 
effective HS fluid with a = 3.4 x 10 -8 cm, we find ~r0(~ = 0) = 16.4 dyn/cm 
and ~0(~ = ~) = 15.0 dyn/cm, while the experimental value is 13.2 dyn/cm. 

Figure 1 shows a plot of the reduced pressure versus the reduced density 
for (14) with n = h. In the fluid range the agreement is excellent. 

4 .  D I S C U S S I O N  

It should be noted that the Gl(r, p) for n = 2 which yields (2) behaves 
for large r as a quadratic polynomial in 1/r like G~(r, p) which yields (1). 
The major point of  this paper is that there is no new physical or geometric 
insight, beyond what is found in Ref. 1, which is necessary to provide one 
with (2). The weakness of  these approximations is clearly evident from the 
fact that no improvement is forthcoming in the second virial coefficient of 
the surface tension a0. Use of other more complicated trial functions such as 
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[(a/r) ~ + (a/r) m] or sums of exponentials, etc. instead of (a/r)" in (12) pro- 
duces no significant improvement, except for slight shifts in the numerical 
values of the lower-order virial coefficients. 
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